Chemistry at King's Academy Ringmer

End point	Knowledge acquired	Skills acquired
	YEAR 7	
5 Matter 5.1 Particles 5.2 Mixtures	 The particle model States of matter Melting, freezing and boiling Evaporation, condensation and sublimation Diffusion Gas pressure Pure substances and mixtures Solutes, solvents and solutions Solubility Filtration Evaporation and distillation Chromatography Top 5 Keywords states of matter; property; density; solubility; filtration 	 Measuring temperature Planning investigations Particle diagrams Plotting temperature-time Choosing scales Carrying out experiments and recording observations results Using models to explain properties Separating mixtures Scientific apparatus
6 Reactions 6.1 Acids and alkalis 6.2 Metals and non-metals	 Chemical reactions Acids and alkalis Indicators and pH Acid strength Neutralisation Making salts Elements Chemical reactions of metals and non-metals Metals and acids Metals and oxygen Metals and water Metal displacement reactions Top 5 Keywords Acid and alkali; Chemical property; Reactivity; Element; Concentration	 Carrying out experiments and recording observations results Using universal indicator Use the pH scale to measure acidity and alkalinity. Use models Deduce the hazards of different acids Design an investigation Interpret a graph of pH changes during a neutralisation reaction. Describe what a salt is and choose the correct name Calculating percentages Comparing the reactivity of metals

7 Earth 7.1 Earth Structure 7.2 Universe	 Sedimentary rocks Igneous and metamorphic rocks The rock cycle Ceramics The night sky The Solar System The structure of the Universe The Earth The Seasons The Moon and changing ideas Top 5 Keywords Weathering; Erosion; Igneous; Sedimentary; Metamorphic	 Modelling Earth's structure Describe advantages and disadvantages of a given model Modelling sedimentary rock formation What determines crystal size in igneous rock? Predict observations Carrying out experiments and recording observations results Give a detailed descriptions and explanations (Rock cycle) Make a conclusion and explain it. Write a fair test enquiry question. Identify control variables. Justify decisions made from property data
	YEAR 8	
5 Matter - 5.3 Elements 5.4 Periodic Table	 Elements Atoms Compounds Chemical formulae Polymers The Periodic Table The elements of Group 1; The elements of Group 7 The elements of Group 0 Top 5 Keywords Atom; Molecule; Compound; Chemical formula; Trend	 Use scientific vocabulary accurately Use appropriate units Use correct chemical nomenclature Represent atoms, molecules, elements, mixtures, and compounds using particle diagrams. Use observations of a pattern in chemical reactions to predict the behaviour Use data to describe a trend in physical properties. Carrying out experiments and recording observations results Name compounds using their chemical formulae. Explain how properties make substances suitable for their uses. Identify hazards
6 Reactions 6.3 Types of reaction 6.4 Chemical energy	 That in a chemical reaction particles are rearranged Combustion Thermal decomposition Conservation of mass Exothermic and endothermic Energy level diagrams Bond energies Top 5 Keywords Reactant; Product; Fuel; Combustion; Exothermic and Endothermic	 Modelling reactions Writing word equations from information about chemical reactions. Identify possible hazards in a demonstration Interpret particle diagrams and models to explain what happens in a chemical reaction. Compare the pros and cons of fuels Predict the products of thermal decomposition Carrying out experiments and recording observations results Use known masses to calculate unknown masses Use experimental observations to distinguish exothermic and endothermic reactions. Use a relative energy level diagrams

7 Earth 7.3 Climate 7.4 Earth resources	 Greenhouse effect Greenhouse gases Global warming The carbon cycle Climate change Extracting metals Recycling Top 5 Keywords Global Warming; Climate change; Extraction; Electrolysis; Recycling 	 Design a model to explain the greenhouse effect Evaluate claims that human activity is causing global warming or climate change. Identify patterns in data. Use an annotated diagram to describe the model in detail Compare the relative effects of human-produced and natural global warming. Interpret graphs that show trends over time, and explain their limitations. Use equations to explain processes that exchange carbon dioxide into and out of the atmosphere. Describe how global warming can impact on climate and local weather patterns.
	YEAR 9	
5 Matter 5.5 Nanoparticles	 What nanoparticles are Nanoparticles properties Nanoparticles uses Understanding surface area to volume ratio Top 5 Keywords Nanoparticle, nanomedicine, nanometer, carbon nanotube, properties 	 Standard form converting units (nano and micrometres) SA:V ratio Extract and interpret information from graphs Defining hazards and risks Making models Applying properties to uses Describe some advantages and disadvantages Plan an investigation
5 Matter 5.6 Atomic models	 Plan an investigation Writing a scientific method How Models of the atom were developed and have changed over time What Dalton, Thomson, and Rutherford discovered about the atom. Top 5 Atom, element, electron, proton, neutron	 Plan an investigation Writing a scientific method Record observations from an experiment Making models Use atomic mass data to order elements
6 Reactions 6.5 Discovery and structure of the periodic table	 How the periodic table is structured and how this was developed How Mendeleev's table enabled others to discover elements Top 5 Keywords Period, group, atomic mass, atomic number, periodic table 	 Categorising and grouping Devising a Periodic Table Use the chemical and physical properties of different elements to arrange elements Writing word equations from information about chemical reactions.
6 Reactions	- How electrons are arranged in atoms	- Identifying trends

6.6 atomic arrangement, properties and trends in periodic groups	 How electron configuration affects reactivity Using observations to determine trends in reactivity Trends in physical properties of the elements in group 1, 7 and 0 Trends in chemical properties of the elements in group 1, 7 and 0 Explaining trends in group 1, 7 and 0 in relation to ease of ionisation and atomic radii Top 5 Keywords Energy level/ shell, electron configuration, displacement reaction, inert, density 	 Practical investigations Writing word equations from information about chemical reactions. 	
7 Earth 7.5 Earth - separation techniques and pH	 How filtration works How gas and paper chromatography works How crystallisation works The difference between evaporation and crystallisation Saturated solutions Applications of the above separation techniques Top 5 Keywords Chromatography, filtration, indicator, mobile phase, stationary phase 	 Scientific drawings Investigation skills Analysing chromatograms Extract and interpret information from graphs practical investigations 	
7 Earth 7.6 Earth - metal reactivity and fuels	 How the reactivity series to can be used support observations Extraction of metals Electrolysis Products of the combustion of fuels Balancing equations How harmful pollutant gases can be removed from car exhausts Catalytic converters Top 5 Keywords Chromatography, filtration, indicator, mobile phase, stationary phase 	 Interpret data from vehicle testing centre Extract and interpret information from graphs Order compounds and elements based on reactivity Writing word equations from information about chemical reactions. 	
	YEAR 10 (GCSE course)		
C1 Atomic structure	 The law of the conservation of mass Balance chemical equations and formulae of substances Differences between compounds and mixtures How mixtures can be separated using techniques such as filtration, crystallisation, distillation, and chromatography. 	 Draw the basic structure of an atom. Diagrams of the difference between a pure element, a mixture, and a compound. Balance given symbol equations. Plan and carry out experiments amd separation techniques and recording observations and results 	

	 The development of the atomic model The mass, charge and location of the subatomic particles and what ions and isotopes are To write and draw electronic structures up to element 20. Top 5 Keywords Formulae, ions, isotope, distillation, chromatography	 Evaluate the models Using atomic number and mass numbers of familiar atoms to determine the number of each sub-atomic particle. Using SI units and prefixes to describe the size of an atom and its nucleus in standard form. Writing the standard electronic configuration notation from a diagram for the first 20 elements.
C2 The periodic table	 The development of the periodic table The work of Dalton, Newlands, and Mendeleev The chemical properties of Group 0, Group 1, and Group 7 elements Identify trends in properties and reactivity Explain these in terms of the electronic structure of the elements. (HT only) The properties and reactions of the transition elements. (TS only) Top 5 Keywords Group, period, periodicity, atomic radius, displacement,	 Listing significant models for ordering the elements. Explaining how and why the ordering of the elements has changed over time. Using electronic structure to show how metals and non-metals are different. Linking electronic structure to how the elements are arranged in the periodic table. Recognise trends in supplied data. Recognising a halogen displacement reaction and explaining what happens in the reaction. Explaining how the outer electrons experience different levels of attraction to the nucleus.
C3 Structure and bonding	 The states of matter and the particle model Limitations of the particle model (HT only) The energy transfers when substances change state. That covalent bonding is the sharing of one or more pairs of electrons between non-metal atoms Ionic bonding involves a metal and nonmetal atom transferring electrons Metallic bonding and the delocalised sea of electrons The difference in bonding of giant ionic structures, simple covalent molecules, and giant covalent structures Nanoparticles and their applications (TS only) 	 Linking how energy, movement, and attraction between particles change as a substance is heated or cooled. Cooling curves Dot and cross diagrams Interpreting the formulae of familiar ionic compounds Modelling ionic compounds Testing conductivity Molecular modelling Ball and stick diagrams Using intermolecular forces to explain properties Comparing structures to explain properties Researching news articles re fullerenes and graphene
C4 Chemical calculations	 Understand relative atomic mass and relative formula mass The mole and Avogadro's constant (HT only) To use the equation number of moles = mass (g) / Ar (HT only) Use moles to balance symbol equations and calculate reacting masses (HT only) Relative atomic mass, relative formula mass, and moles 	 Calculate relative atomic mass Calculate relative formula mass Calculate reacting masses (HT only) Calculate moles to concentrations (HT only) Calculate yield (TS only) Calculate atom economy (TS only) Calculate titrations (TS only) Carry out titrations (TS only)

	to concentrations (HT only) - Carry out calculations with concentrations in g/dm3. - Calculations for yield, atom economy and titrations (TS only) Top 5 Keywords relative atomic mass, relative formula mass, constant, moles, concentration	- Calculate volumes of gases (TS only)
C5 Chemical changes	 The reactivity series The reactions of the metals with water and acids Displacement reactions The extraction of metals The concepts of oxidation and reduction Salts and how they are prepared The pH scale How pH relates to H+(aq) ion concentration and the difference between strong and weak acids. (HT only) How alkalis are a subgroup of bases. Ionic and half equations (HT only) 	 Plan and carry out experiments and recording observations and results Use general equations to write specific word equations Using oxidation and reduction in descriptions Justify uses of metals based on their chemical reactivity. Write balanced symbol equations, with state symbols Evaluate in detail investigations Use the reactivity series to determine if reactions occur. Explaining how carbon or hydrogen can be used to reduce an ore. Identify the chemical formula of the salt Write ionic and half equations, including state symbols Preparing a pure, dry sample of a soluble salt from an insoluble substance and a dilute acid.
C6 Electrolysis	 lonic compounds can undergo electrolysis when molten or in solution Explain the movement of particles during electrolysis The reactions that occur at the electrodes The extraction of aluminium How to investigate the electrolysis of a solution Predict the products of electrolysis Write balanced half equations. (HT only) Top 5 Keywords Electrolysis, aqueous, molten, cryolite, brine	 Plan and carry out electrolysis and recording observations and results Writing half equations Understanding the effect of water on electrolysis Using OIL RIG Explaining the use of cryolite and graphite anodes Linking to industrial uses
C7 Energy changes	 Energy transfers that occur during chemical reactions Exothermic reactions Endothermic reactions Describe uses of exothermic and endothermic reactions The quantitative energy transfers in a reaction Bond energies (HT only) Chemical cells (TS only) Fuel cells (TS only) 	 Interpret experimental data Identifying if a reaction is exothermic or endothermic Sketching and interpreting reaction profile diagrams Calculating bond energies (HT only) Bond diagrams (HT only) Applying understanding of the reactivity series and electrolysis to chemical cells and fuel cells (TS only) Investigating chemical cell

	Top 5 Keywords exothermic, endothermic, activation energy, reaction profile, bonds	
	YEAR 11 (GCSE co	urse)
C8 Rates and equilibrium	 The factors that affect the rate of a reaction, including temperature, surface area, concentration, and pressure Explain the effect of each factor on the rate of reaction using collision theory That each factor increases the frequency of effective collisions, not just the number of collisions Explain the effect of catalysts on the rate of a reaction in terms of providing an alternative reaction pathway with a lower activation energy Reversible reactions and dynamic equilibrium Apply their knowledge on endothermic and exothermic reactions to equilibrium reactions Predict the effect of temperature changes on the reversible reactions and the position of the equilibrium Use Le Châtelier's principle to explain the effect of temperature and pressure on the position of equilibrium (HT only) Top 5 Keywords Rate factor, frequency, collision theory, catalyst, equilibrium 	 Calculating the mean rate of reaction. Calculating the rate of reaction at a specific time. Plot and use a graph to calculate the gradient to measure the initial rate of reaction. Use tangents to calculate rate (HT only) Justify a chosen method for a given reaction to monitor the rate of reaction. Use collision theory to explain how increasing factors increase the rate of reaction. Safely complete experiments on how factors affect the rate of a reaction. Justify quantitative predictions Evaluate in investigations Use ideas about proportionality. Use reaction profiles in explanations
C9 Crude oil and fuels	 Hydrocarbons and the alkanes The reactions of hydrocarbons, including combustion (both complete and incomplete) and cracking Write balanced symbol equations for the complete combustion of hydrocarbons Describe the conditions of cracking Describe the test for alkenes (a product of cracking) Crude oil as a source of hydrocarbons and the fractional distillation of crude oil How the size of the hydrocarbon molecule affects its properties, including viscosity, boiling point, and flammability Top 5 Keywords Fraction, hydrocarbon, viscosity, saturated, cracking 	 Name and draw the displayed formula of the first four alkanes Interpreting tables of boiling point Displayed formulae Classify alkanes Apply general formulae Bar charts Compare properties of fractions Summarise trends Use standard lab tests for gases Calculate amounts of reactants Evaluate dangers of incomplete combustion Balancing equations

C10 Organic reactions (TS only)	 More organic functional groups – alkenes, alcohols, carboxylic acids, and esters The reactions and conditions of alkenes (with halogens, water, and hydrogen), Alcohols (combustion, oxidation, and reaction with sodium), and carboxylic acids (to make esters). Why carboxylic acids are called weak acids Top 5 Keywords Alkene, alcohols, carboxylic acids, ester, homologous series	 Identify, name, and draw the structural formula of the first four alkenes, alcohols, and carboxylic acids Identify, name, and draw the ester ethyl ethanoate Predict the word and balanced symbol equations Compare and contrast the reactivity of alkanes and alkenes. Use general formulae Classify an organic compounds Comparing the reactions of alcohols Link volatility to molecular forces.
C11 Polymers (TS only)	 Different types of manufactured polymers, including addition polymers and condensation polymers Poly(ethene) Basic principles of condensation polymerisation (HT only) Natural polymers, including polysaccharides, proteins, and DNA. The basic structure of DNA. How amino acids react together to form proteins (HT only) The difference between the monomer and the repeating unit of the polymer. 	 Identify an addition polymer from polymer and monomer diagrams Drawing the monomer from the polymer and the polymer from the monomer Draw other addition polymers and associated monomers Identify the types of monomers that form natural polymers Interpreting formulae Labelled diagrams Extracting DNA from kiwifruit
C12 Chemical analysis	 The difference between a pure substance, a mixture, and a formulation What is meant by purity Chromatography experiments Analyse a chromatogram, both qualitatively and quantitatively using Rf values The different experimental tests for gases, including both the procedure and positive result. Experimental tests for positive and negative ions (TS only) Flame emission spectroscopy (TS only) 	 Use melting point and boiling point data can be used to determine the purity of a substance Calculate percentage composition of components in a range of formulations. Describe and safely carry out a method to make a paper chromatogram. Calculate Rf values from given data. Calculate Rf values from a chromatogram, using an appropriate number of significant figures. Interpret a chromatogram to identify unknown substances. Interpret results to identify a gas that is present. Identify a metal ion from the colour of a flame or the colour of the hydroxide precipitate. Ionic equations Safely carry out testing for carbonates, halides, and sulfate ions.

		- Interpret instrumental results of flame emission spectroscopy
C13 The Earth's atmosphere	 The volcanic activity theory of the origin of the atmosphere Describe the history of the atmosphere and timescales involved. How it has evolved over time General composition of the atmosphere how it has changed and how the atmosphere is currently being affected by human activity Greenhouse gases and effect Human activities that are thought to cause global warming, and some of the effects this has on the climate of the Earth Carbon footprint The effect of other pollutants on the Earth, including carbon monoxide, sulfur dioxide, nitrogen oxides, and particulates Top 5 Keywords Atmosphere, greenhouse effect, carbon footprint, pollutant, particulates 	 Interpret evidence concerning other theories, and be able to evaluate them. Develop their working scientifically skills Evaluating models Interpreting and evaluating evidence for scientific theories Calculate carbon footprint Use balanced symbol equations to explain how gases were formed Interpret pie charts Make flow charts Evaluate the scale, risk, and environmental impact of global climate change. Justify why reducing greenhouse gas emissions can be difficult to achieve. Evaluate the use of products, services, or events in terms of their carbon footprint
C14 The Earth's resources	 The difference between finite and renewable resources Understanding of finite and renewable resources should be applied to the need to reuse and recycle Ways of reducing the use of finite resources Specific resources that we use, including water and metals (in particular copper) Different ways that water is treated, both to create potable water and to remove waste products Metal-ore extraction and electrolysis (HT only) Alternative biological extraction of copper (HT only) Top 5 Keywords Finite, renewable, potable, phytomining, bioleaching 	 Carry out life cycle assessments on products. Describe and classify a resource as finite or renewable when information is given. Explain the use of natural, sustainable, and finite resources. Interpret information from different formats including graphs, charts, tables, and prose. Draw conclusions consistent with information provided from graphs, charts, tables, and prose and evaluate the validity of the data. Write balanced symbol equations to explain metal extraction techniques. Write ionic equations to explain metal extraction techniques and identify the species being oxidised or reduced
C15 Using our resources (TS only)	 Rusting - how both water and air are required for iron to corrode Methods for preventing rusting – barrier methods and sacrificial methods Alloys, polymers, ceramics, glass, and composites The Haber process and how it is carried out economically on an industrial scale Why the industrial conditions for the Haber process are described as a compromise 	 Identify key properties and link these to their common uses List some ways to prevent rusting. Write balanced equations to describe rusting and identify species that are oxidised and reduced. Evaluate an alloy in terms of its properties and uses. Use data about the properties to suggest a suitable plastic or alloy Evaluate a plastic in terms of its properties and uses. Compare quantitatively the physical properties of glass and

- Importance of the Haber process in the production of ammonia, an important feedstock in the production of fertilisers, both in the laboratory and industrially alongside potassium and phosphorus fertilisers.	 clay ceramics, polymers, composites, and metals. Write a word equation to describe the Haber process. Evaluate the Haber process using atom economy and LCA to determine its environmental impact.
Top 5 Keywords Rusting, alloy, ceramic, composite, compromise	